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ABSTRACT: The aim of this study was to assess the efficiency of likelihood ratio (LR)-based measures when they are applied to solving vari-
ous classification problems for glass objects which are described by elemental composition, and refractive index (RI) values, and compare LR-based
methods to other classification methods such as support vector machines (SVM) and na�ve Bayes classifiers (NBC). One hundred and fifty-three glass
objects (23 building windows, 25 bulbs, 32 car windows, 57 containers, and 16 headlamps) were analyzed by scanning electron microscopy coupled
with an energy dispersive X-ray spectrometer. Refractive indices for building and car windows were measured before (RIb), and after (RIa) an anneal-
ing process. The proposed scheme for glass fragment(s) classification demonstrates some efficiency, although the classification of car windows
(c) and building windows (w) must be treated carefully. This is because of their very similar elemental content. However, a combination of elemental
content and information on the change in RI during annealing (DRI = RIa)RIb) gave very promising results. A LR model for the classification of
glass fragments into use-type categories for forensic purposes gives slightly higher misclassification rates than SVM and NBC. However, the observed
differences between results obtained by all three approaches were very similar, especially when applied to the car window and building window
classification problem. Therefore, the LR model can be recommended because of the ease of interpretation of LR-based measures of certainty.
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Glass is a material frequently present at the scene of such events
like car accidents, burglaries, assaults and other accidents, and
criminal offenses. Very small glass fragments (linear dimension
generally lower than ca. 0.5 mm) that arise during these events can
be trapped by, and persist upon the clothes, shoes, and hair, of par-
ticipants in these activities (1,2).

One of the problems of forensic glass analysis is the comparison
problem. This aims to solve the question as to whether two speci-
mens of glass, for example a glass fragment recovered from the
clothes of a suspect, and a glass fragment collected from the scene
of a crime, might have originated from the same glass object. The
comparison problem has been dealt within the forensic literature
(3–6). The other task related to glass analysis, and frequently
addressed, is a determination of use-type category of a glass frag-
ment, for example, was the fragment from a window, or from some
glass container such as a bottle? This process is also called a classi-
fication problem, and becomes especially important when there
may be no control sample found at the scene of crime. Some
knowledge of the type of glass could help investigators focus their
search for appropriate control materials.

Most glass fragments analyzed by forensic experts are smaller
than 0.5 mm, so the analysis of morphological features, such as
thickness and color, are of no value for the assignment of use
category. Thus, it is necessary to employ the glass fragments
physico-chemical features such as refractive index (RI), and
elemental composition, to base judgments of use category.

When choosing an analytical method for glass analysis for foren-
sic purposes, one should take into account the fact that the amount
of material is usually very small. So, the method chosen should be
non-destructive leaving the material available for re-use. The Glass

Refractive Index Measurement (GRIM) method is often used (7–9),
and scanning electron microscopy coupled with an energy disper-
sive X-ray spectrometer (SEM-EDX), are routinely used in many
forensic institutes for the investigation of glass, and other forensic
problems (5,6,10–12). Other methods of elemental analysis of glass
fragments are l-X-ray fluorescence (13) and laser ablation induc-
tively coupled plasma–mass spectrometry (LA-ICP-MS) (14). How-
ever, these methods require relatively large fragments of glass, for
example: LA-ICP-MS gives good results with pieces of glass
greater than 0.5 mm. SEM-EDX has the drawback that it can only
provide information about major and minor elements, such as O,
Na, Al, Mg, Si, K, Ca, Fe, from any glass fragment. Trace ele-
ments exist in concentrations below the detection limits of this
method. It is commonly believed that trace element concentrations
are essential to enable the glass investigator to effectively compare
and individualize glass evidence. However, it has been shown that
some headway can be made on the basis of the major and minor
element concentrations (e.g., 4–6, 10, 11). Given this, is it possible
to also solve the problem of classification on the basis of the result
of analyses performed by the SEM-EDX method, and in the
absence of information for trace elements?

Some classification work has already been conducted using phys-
ico-chemical data obtained by the analytical methods usually used
in the field of glass analysis (10,11,13,15–18). For example, a non-
statistical approach attempted for glass objects used SEM-EDX
data, and permitted the correct classification of glass fragments
which came from categories having special physico-chemical fea-
tures, and which therefore also possessed special and distinct ele-
mental compositions such as those of lighting bulbs (10). Glass
objects from light bulbs were found to contain more potassium
and ⁄or barium than glass objects from other categories. Oxides of
these elements improve the optical properties of these glass objects.
Attempts to apply cluster analysis for solving the classification
problems of glass fragments have been described (10,15,17,18).
The efficiency of the proposed approaches was generally
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satisfactory. However, the number of incorrectly classified objects
was occasionally high.

The determination of use-type category for glass fragments based
upon the concentrations of the major and minor elements might be
approached by the application of different types of classification
methods (11) such as support vector machines (SVM) and na�ve
Bayes classifiers (NBC). Some form of decision theory is necessary
to place any specific glass fragment into classes H1 or H2 from the
posterior probabilities, p H1 Ejð Þ and p H2 Ejð Þ. These probabilities
might be calculated from the statistical properties of the physico-
chemical observations, which can be termed E, or evidence. In the
forensic sphere, posterior probabilities are the province of the court
and justice system. The realm of the forensic expert is to evaluate
evidence (E). This can be in the context of two propositions, which
here are notated H1 and H2. So, it could be suggested that the role
of the forensic scientist is the estimation of the conditional proba-
bilities p E H1jð Þ and p E H2jð Þ. The likelihood ratio (LR):

LR ¼ p E H1jð Þ
p E H2jð Þ ð1Þ

is a well-documented measure of evidence value in the foren-
sic field (3–6), and is increasingly employed as a measure of
evidential strength in the forensic comparison problem. The
LR compares the probability of the measurements (E – physi-
co-chemical features determined for compared glass samples)
in the light of the assumption of a common source for these
samples, termed the prosecution proposition (H1), with the
probability of the measurements (E) assuming different
sources for these samples, termed the defense proposition
(H2).

In this paper, an algorithm of classification of glass fragments
has been applied to a set of 153 samples, each originating from
one of five known glass categories. The categories were: car win-
dows (c), building windows (w), containers (p), car headlamps (h),
and light bulbs (b). The first problem attempted was a classification
of each of the glass objects into a cw category (of car and building
windows) and a bhp category (bulbs, headlamps, and containers).
Glass objects from c and w categories have very similar elemental
compositions because they are manufactured in a very similar way
(a float glass manufacturing method). Glass objects from categories
b, h, and p represent other types of glass commonly met in forensic
practice. Then, a refinement to the original cw ⁄bhp classification
was attempted where if a glass sample was classified to the bhp
category an attempt was made to further classify it into bh or p cat-
egory. It could be expected (10) that bulbs and car headlamps (bh)
could have systematically different elemental composition to the
containers glass (p—jars and bottles) because of their optical prop-
erties. Again, were a glass specimen to be classified as belonging
to the bh category, then this could be further classified to b or h
category.

Finally, an attempt to further classify the cw class into either car
glass, or building glass was made. It has been found (11) that it
could be done sometimes on the basis of major and minor elemen-
tal composition; however, classification is poor. So, a new feature
has been examined to aid in this classification task, i.e., RI ana-
lyzed before annealing process (RIb) or DRI (a difference between
RI measured after annealing process [RIa] and RIb). Samples of
glass were annealed at about 600�C (8,19,20), which removes
tensions in glass. This process has already been applied to car
window glass. It should be mentioned that simultaneous analysis of
a glass fragment by SEM-EDX and GRIM techniques is only pos-
sible if a glass fragment is relatively large (much bigger than

0.5 mm). Then, it is possible to divide it into smaller parts which
could be used separately for SEM-EDX and GRIM analysis (with
or without annealing process).

Materials and Methods

SEM-EDX Analysis of Glass Fragments

One large piece of glass from each of 153 glass objects (23
building windows, 25 bulbs, 32 car windows, 57 containers, and 16
headlamps) was selected. Each of these pieces was wrapped in a
sheet of gray paper and further fragmented. Four glass fragments,
of linear dimension less than 0.5 mm with surfaces as smooth and
flat as possible, were placed on self-adhesive carbon tabs on an
aluminum stub and then carbon coated using an SCD sputter
(Bal-Tech, Balzers, Liechtenstein). Analysis of the elemental con-
tent of each glass fragment was carried out using a scanning elec-
tron microscope (JSM-5800; Jeol, Tokyo, Japan), with an energy
dispersive X-ray spectrometer (Link ISIS 300; Oxford Instruments
Ltd., Witney, Oxfordshire, U.K.). Three replicate measurements
were taken from different areas on each of the four fragments. The
measurement conditions were: accelerating voltages 20 kV, life
time 50 sec, magnification 1000–2000·. The calibration element
was cobalt. The semquant option (part of the software link isis;
Oxford Instruments Ltd.) was used in the process of determining
the weight percentage of particular elements in a fragment. The
option applied a ZAF correction procedure, which takes into
account corrections for the effects of difference in the atomic num-
ber (Z), absorption (A), and X-ray fluorescence (F). The selected
analytical conditions allowed the determination of all elements
except lithium (Li) and boron (B). However, as only the concentra-
tions of the main elements could be determined by SEM-EDX,
only oxygen (O), sodium (Na), magnesium (Mg), aluminum (Al),
silicon (Si), potassium (K), calcium (Ca), and iron (Fe) are further
considered in this paper.

GRIM Analysis of Glass Fragments

The RI was determined by the thermo-immersion method,
using the GRIM 2 system made by Foster & Freeman (Evesham,
Worcestershire, U.K.), at 589 nm. Glass fragments from each of
the 55 objects from the car and building window category were
mounted onto separate clean microscope slides. Each glass frag-
ment was covered with silicone oil (silicone oil B; Locke Scien-
tific, Southwick, Fareham, U.K.), covered with a cover slip. The
match temperature (MT), that is, the temperature when the RI of
the immersion oil and the RI of the glass fragment are the equal,
was determined, and the value of the RI was determined automat-
ically from the calibration model. The calibration model
(RI = )3.74 · 10)4 MT + 1.54491) was calculated earlier from
measurements of glass standards (Locke Scientific). The RI was
measured five times only from the bulk, or the non-float surfaces,
because the RI of the float surface differs from the other
surfaces.

Glass fragments of length ca. 0.5 mm, were put into a metal
sample holder, which ensured a uniform and reproducible thermal
environment, and annealed in a muffle furnace (Nabertherm L3;
Nabertherm GmbH, Lilienthal, Germany). The fragments were
then heated to a temperature of 550�C, then cooled to 480�C at a
rate of 15�C ⁄ h. The glass fragments were then cooled freely to
room temperature. The relatively short schedule of annealing was
long enough to reveal a comparatively large difference in RI of
glass fragments.
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SVM

SVM (21–30) have been considered by many researchers to be
the best performing discriminative classifiers. To visualize how
SVM work, we shall here consider only two variables; however, all
the concepts and derivations can be extended to higher dimensional
problems. The simplest situation is where two classes are linearly
separable. This means that we can find a line (a plane in three
dimensions, a hyper-plane in higher dimensions) that perfectly sep-
arates the two classes.

The example of Fig. 1a shows that theoretically many different
solutions (separating lines) could be chosen, but an SVM selects an
optimal boundary line that maximizes the distance between the
classes and the objects at the border (Fig. 1b). This distance is
known as the margin, while the objects at the border are called
support vectors (SVs) because the optimization task involving the
maximization of the margin depends only on their displacement in
the dataspace.

When classifying a new object y, the decision function will sim-
ply be the equation of a separating hyper-plane explicitly expressed
in terms of the SVs:

z ¼ sgn
X
i¼1

aizis
T
i yþ b

 !
ð2Þ

where z (equal to €1) is the label assigned to the object y that
we wish to classify, si is a generic SV, zi its label, the coeffi-
cients ai, and b is the offset parameter found during a learning
process. The sign of the function determines the class member-
ship of y, while its absolute value represents a confidence level,
because the higher this is, the stronger the SVM believes one
object to belong to one class.

In the case of the non-linearly separable cases (Fig. 2a), the opti-
mal separating hyper-plane is searched in a higher dimensional
space (called a feature space) than a dimension of input space
(Fig. 2). The objects are projected by means of the feature function.
The optimal separating hyper-plane found in this way will have a
form of a curved boundary of certain complexity when this will be
projected from the so-called feature space to the input space
(Fig. 2c). In practice, more than one dimension is added to the
input space (Fig. 2a) when the feature space is created because
there is a simple rule—the more dimensions added, the easier to
find a separating hyper-plane. The kernel functions are the most
often used in SVM like the feature functions, e.g., the radial basis
function (RBF) (see Eq. [10]).

NBC

NBC (31–34) have been employed to address various problems
in the forensic sciences (3). NBC are generative, meaning that they

represent a joint probability distribution over the data and the
labels. NBC are called na�ve because they make the assumption
that variables are generated independently of the others. This
assumption is almost always false; however, NBC are robust and
generally perform well (11). The probability model for classifiers is
a conditional model p H X1; . . . ;Xnjð Þ and the application of the Ba-
yes theory allows us to write:

p H X1; . . . ;Xnjð Þ ¼ p Hð Þp X1; . . . ;Xn Hjð Þ
p X1; . . . ;Xnð Þ ð3Þ

where H is the considered category, X1, …, Xn—n variables
which describe ith object presented in a tuning set.

The following assumption is used for the joint probability model
presented in the denominator—each feature Xi is conditionally inde-
pendent of every other feature Xj for j „ i, that is,

p H X1; . . . ;Xnjð Þ ¼ 1
Z

p Hð Þ
Yn

i¼1

p Xi Hjð Þ ð4Þ

where Z is the scaling factor dependent only on X1, …, Xn. This
is constant if the values of the variables are known.

The learning task requires only estimation of p Xi Hjð Þ and p Hð Þ
on the basis of the tuning data and it could be carried out indepen-
dently because of the assumption that variables are independent.
This assumption reduces a n-dimensional task to n one-dimensional
tasks. Kernel density estimation is used the most often in the aim
of estimation of probability density functions.

The classification of the new object y characterized by deter-
mined values of particular variables (y1, …, yn) is based on the fol-
lowing decision rule—the new object belongs to the class for
which the hypothesis is most probably what is known as the maxi-
mum a posteriori decision rule:

classify y1; . . . ; ynð Þ ¼ arg max
c

p Hð Þ
Yn

i¼1

p yi Hjð Þ ð5Þ

LR Approach

In this paper, a multivariate model based on the ideas which
created the model for comparison problem published in (4,6) was
used. The model for comparison problem proposed by authors of
these papers considered two sources of variability (within glass
object and between glass objects). SVM and NBC models only
allow to consider a between-object variability. Therefore, the LR
model which considers only this source of variability is proposed
for LR calculations in the aim of determination of use-type cate-
gories of a glass fragment described by a vector �y of n
variables:

FIG. 1—A graphical illustration of support vector machines—a linearly separable case. M—the margin between two different categories. Objects (squares
or stars) in circles are support vectors.
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LR ¼ p E H1jð Þ
p E H2jð Þ ¼

R
f �y l1j ;C1ð Þdl1R
f �y l2j ;C2ð Þdl2

ð6Þ

where H1—the object comes from class 1, and H2—the object
comes from class 2, �y—vector of means of considered n vari-
ables calculated for a glass object on the base of all performed
measurements, that is, 12 made by SEM-EDX and five made
by GRIM technique, l1, l2—vectors of means of considered n
variables within calculated for populations considered as cate-
gory H1 and H2, C1, C2—variance-covariance matrices
(between-objects variability) calculated for considered variables
which describe glass objects presented in data sets within class
1 and class 2.

The between-object distribution was modeled by a multivariate
kernel density. It could be shown (Eq. [6]) that:Z

f �y l1j ;C1ð Þdl1 ¼ 2pð Þ�k1=2 h2C1

�� ���1=2

1
m1

Xm1

i¼1

exp � 1
2

�y1 � �x1ið ÞT h2C1
� �� ��1

�y1 � �x1ið Þ
� � ð7Þ

and similar for
R

f �y l2j ;C2ð Þdl2 which gives:

LR ¼
h2C1

�� ���1=2 1
m1

Pm1

i¼1
exp � 1

2 �y � �x1ið ÞT h2C1ð Þ½ ��1
�y � �x1ið Þ

n o
h2C2j j�1=2 1

m2

Pm2

i¼1
exp � 1

2 �y � �x2ið ÞT h2C2ð Þ½ ��1 �y � �x2ið Þ
n o

ð8Þ

where �x1i, �x2i—vectors of means of n variables calculated on
the basis of all 12 or five performed measurements for an ith
glass object from a population with categories H1 and H2. h—a

smoothing parameter h ¼ hopt ¼ 4
2nþ1

	 
 1
nþ4 1

m
1

nþ4
, m1, m2—numbers

of samples in sets of background data used for estimation of
probability density functions in nominator and denominator.

The decision rules are that values of LR above 1 support H1,
and values of LR below 1 support H2. A value of LR close to 1
provides little support for either proposition. Also the larger, or
lower, the value of the LR, the stronger the support of E for H1 or
H2.

Calculation of a full model, which takes into account all vari-
ables, requires the estimation of the probability density function
which takes into account all variables under each of two propo-
sitions, H1 and H2. As here glass fragments were described by
at least seven variables, then it is necessary to reliably estimate
seven means, seven variances, and 21 covariance, which is diffi-
cult from a sample of only 153. An approach based on graph
theory has been used to factorize the joint density function into

the product of several density functions on lower dimensions
which allow the parameters to be estimated with the appropriate
levels of reliability (8). It can be shown that the elements of the
scaled inverse correlation matrix are the negative partial correla-
tion coefficients, and that values of partial correlation can be
used to construct a decomposable graphical model of the full
density into cliques representing product of several density func-
tions in lower dimensions. The relationships between the ele-
ments in glass are not causal, and so the graphs used are
undirected. The graphical model was selected by the sequential
addition of edges decided by inspection of the partial correlation
matrix. First, the largest magnitude partial correlation was
selected, and an edge was added between the two nodes con-
nected by this partial correlation. This process was repeated until
all nodes are part of the graphical model. The factorization of
the full model is given by:

f Ci Sijð Þ ¼ f Cið Þ
f Sið Þ

ð9Þ

where Ci is the ith clique in the model, Si—is the set of all
separators for the ith clique calculated from a set chain of the
cliques for the model.

A subset of variables in which all the nodes are connected to
each other is known as a complete subgraph, and the corresponding
subset of variables is known as a clique. To find a set chain, which
is a particular ordering of the cliques in the model, the following
algorithm was applied to the collection of cliques: select a node
arbitrarily from the model graph and denote this as the lowest num-
bered node, number each remaining node in turn ordered by the
number of edges linking it to any other already numbered node;
break ties arbitrarily, assign a rank to each clique based upon the
highest numbered node in the clique, if two cliques share a highest
numbered node then rank arbitrary between the two nodes. Given
the cliques for the model (Ci), and a suitable set chain, the sets of
separators (Si) for each clique is found. The first clique in the set
chain is always a complete subgraph, and there are no separator
sets. After that, the next clique presented in the set chain is added
to the model. The intersection of elements between these two
cliques becomes the first separator set. The process is continued
until all cliques are joined to the model. A practical example is
presented in the Results section.

Software

Functions written in R (35) were applied. The package e1071
was used for data analysis by SVM and a package klaR was used
for data analysis by NBC. Routines for LR calculations were
written by the author based on functions developed previously
(4,6).

FIG. 2—A graphical illustration of support vector machines—a non-linearly separable case; (a, c) an input space, (b) a feature space. M—the margin
between two different categories. Objects (squares or stars) in circles are support vectors.
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Results

Descriptive Statistics

Reports from semquant software contain only data about selected
elements. These were O, Na, Mg, Al, Si, K, Ca, and Fe; it was
assumed that a sum of concentration of these elements was equal
to 100 wt %. From the eight elements measured, seven independent
variables were derived by taking the log10 of oxygen concentration
to concentration of each element. The following abbreviations of
such ratio were used in this paper: Na¢, Mg¢, Al¢, Si¢, K¢, Ca¢, and
Fe¢. This normalization effectively removes stochastic fluctuations
in instrumental measurement. In the case, when an element was
not present, or its concentration was below a SEM-EDX detection
limit (0.1 wt % for most of considered elements), then zero was
substituted by a very small value (0.0001 wt %).

The mean of each of seven variables within each glass object
was calculated from 12 replicate measurements (three measure-
ments were made on each of four glass fragments collected from
each glass object). This resulted in a 153 · 7 data matrix. For
glass objects from c and w categories additional features were
analyzed. These were RIb and DRI. Each glass object was mea-
sured five times in order to determine the RI before (RIb), and
after the annealing process (RIa). Mean values for each glass item
for RIb and RIa were calculated, and from that DRI was calcu-
lated as DRI = RIa)RIb. It is reasonable to expect that variables
used in a classification task should have values of similar order
of magnitude, to prevent a variable having undue influence on
the results of the classification problem than another variable by
having systematically much larger values. The DRI values were
three orders of magnitude lower than other considered variables.
Therefore, a log transform of DRI was used during this analysis
( log10 DRIð Þj j). Descriptive statistics of RIb and DRI could be
found in Table 1.

Tuning and Test Set Creation

Tuning data sets which were necessary at learning process when
NBC and SVM classifiers were being used, contained 75% of the

glass objects from the database (Table 2). The remaining glass
objects formed a test set. Glass objects to form the tuning and test
sets were chosen randomly and uniformly with the assumption that
the proportion of glass objects from each glass category within the
tuning and testing sets were the same as in the original database
(Table 2), that is,

(i) cw versus bhp—36% glass objects from cw category and
64% from bhp category;

(ii) bh versus p—42% glass objects from bh category and 58%
from p category;

(iii) b versus h—61% glass objects from b category and 39%
from h category;

(iv) c versus w (all three combinations of variables)—58% glass
objects from c category and 42% from w category.

Ten different tuning and test sets were created and employed.
Tuning sets were also used for determination of parameters of
LR models (i.e., variance-covariance matrices and graphical
model).

Classification of Glass Objects by SVM

A C-classification approach with the most common used kernel
function, the RBF kernel, was used. This is defined by the
equation:

K xi; xj

� �
¼ exp �r xi � xj

�� ��2
	 


ð10Þ

for r > 0, where xi, xj are two generic training objects in the
data set. This function requires only the tuning of a single
parameter, the radial width r. It was also necessary to select
the most suitable value of penalty error C. A tuning procedure
was conducted separately on each of the 10 tuning sets, for each
of the classification problems, to try to estimate a suitable range
for Ĉ and r̂ values. The ranges of Ĉ and r̂ were selected by
observation of suitable tuning plots such as those given as
Fig. 3. It was found that the best combination of Ĉ and r̂ were:
(i) r̂ 2 0:01; 0:30h i;

TABLE 1—Descriptive statistics of each variable in each considered glass category.

Category Parameter

Variable*

Na¢ Mg¢ Al¢ Si¢ K¢ Ca¢ Fe¢ RI dRI

b �x 0.767 2.762 1.624 0.137 1.558 2.678 5.392 n.a. n.a.
SD 0.142 1.766 0.131 0.018 0.821 2.047 0.227 n.a. n.a.
Min 0.603 1.326 1.370 0.105 0.721 1.020 4.849 n.a. n.a.
Max 0.944 5.509 1.781 0.177 3.621 5.509 5.575 n.a. n.a.

c �x 0.694 1.364 2.400 0.152 4.164 0.911 4.569 1.519 2.726
SD 0.015 0.151 0.920 0.032 1.638 0.064 1.671 0.002 0.083
Min 0.661 1.181 1.359 0.082 2.066 0.789 1.882 1.515 2.638
Max 0.722 2.119 5.690 0.209 5.698 1.019 5.705 1.524 2.959

h �x 0.700 3.863 1.890 0.148 2.022 0.970 5.574 n.a. n.a.
SD 0.036 1.834 1.001 0.055 1.392 0.280 0.025 n.a. n.a.
Min 0.618 1.335 1.444 0.089 1.301 0.776 5.544 n.a. n.a.
Max 0.732 5.579 5.596 0.285 5.575 1.955 5.632 n.a. n.a.

p �x 0.711 2.023 1.827 0.183 3.098 0.908 5.101 n.a. n.a.
SD 0.031 0.928 0.102 0.033 1.520 0.065 1.215 n.a. n.a.
Min 0.625 1.310 1.698 0.088 1.721 0.785 2.282 n.a. n.a.
Max 0.769 5.705 2.328 0.227 5.712 1.111 5.718 n.a. n.a.

w �x 0.693 1.363 3.257 0.139 4.770 0.905 3.481 1.520 3.031
SD 0.018 0.168 1.585 0.033 1.322 0.077 1.596 0.002 0.218
Min 0.658 1.180 1.846 0.080 2.144 0.817 1.896 1.515 2.301
Max 0.722 1.983 5.682 0.235 5.719 1.126 5.719 1.525 3.523

b, bulbs; c, car windows; h, headlamps; p, containers; w, building windows; n.a., not applicable.
*Na¢ is an abbreviation of log10(O ⁄ Na) and so on; dRI is an abbreviation of log10 DRIð Þj j.
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(ii) Ĉ 2 1; 10h i—c versus w classification problem (seven vari-
ables, i.e., elemental content only) and b versus h problem;

(iii) Ĉ 2 10; 100h i—other considered classification problems.

Subsequently 10 different values of Ĉ and r̂ were taken for analy-
sis, e.g., when Ĉ 2 1; 10h i then Ĉ = 1, 2, …, 10 and 30 different
values when r̂ 2 0:01; 0:30h i then r̂ = 0.01, 0.02, …, 0.30. These
created 300 different pairs of Ĉ and r̂ within each of the considered
classification problems. Next, each combination of Ĉ and r̂ was
applied in the classification process of samples within the tuning sets.
The accuracy of classification, i.e., the percent of the total number of
predictions which were corrected, as well as the number of necessary
SVs were taken into account. It was assumed that the best pair of Ĉ

and r̂ was the one which gave relatively high accuracy in tuning sets
and a relatively small number of SVs necessary to construct a proper
hyper-plane. The optimal sets for Ĉ and r̂ were selected on the basis
of the analysis of Table 3. These sets were:

(i) Ĉ = 80 and r̂ = 0.10 when the problem was a classification
into car and building windows or bulbs, headlamps, and con-
tainers (cw vs. bhp);

(ii) Ĉ = 100 and r̂ = 0.05 when the problem was a classification
into bulbs and headlamps or containers (bh vs. p);

(iii) Ĉ = 10 and r̂ = 0.05 when the problem was a classification
into bulbs or headlamps (b vs. h) and when the problem was
a classification into car windows or building windows (c vs.
w) on the basis of results of elemental content;

(iv) Ĉ = 40 and r̂ = 0.05 when the problem was a classification
into car windows or building windows (c vs. w) on the basis
of results of elemental content and RIb values or DRI values.

Values of accuracy, that is, the proportion of the total number of
predictions which were correct, within each of classification prob-
lems and each of the test sets obtained by application of SVM as
well as NBC and LR approach, are given in Table 4.

Classification of Glass Objects by NBC

The estimation of p Xi Hjð Þ was made using R. A problem with
the NBC approach is that knowledge of a priori probabilities of
objects within each category is required. The estimation of these
probabilities for the wider population can be difficult. Here the
sample prior probabilities p Hð Þ were used, that is: p(H = cw) =
0.36 and p(H = bhp) = 0.64 for the classification of fragments into
car and building windows categories, or bulbs, headlamps, and con-
tainers categories. The analysis of the influence of various values
of a priori probability p(H) on the level of false positives and neg-
atives, showed (11) that a number of incorrect classifications
depend on the assumed value of p(H) only when these values were
near to 0 or 1. Therefore, it was considered sufficient to estimate
p(H) as a proportion of an object of particular category within
test sets, and use those as prior probabilities. Results of analysis
performed by NBC model are given in Table 4.

Classification of Glass Objects by LR Approach

The rescaled inverse of the variance-covariance matrices for the
considered seven or eight variables in the particular classification
problem are given in Table 5. Graphical models were constructed
as described earlier. They were obtained on the base of data of
all glass objects considered in particular classification problem.
The model presented in Fig. 4a represents the final graphs
obtained for the cw versus bhp problem. The cliques found and
numbered in the graph are presented in Fig. 4b. The graph was
factorized in a way described by (9). The clique (Mg¢, Ca¢) has
the highest numbered node Mg¢, so the clique is given the same
number as Mg¢, which is 7. A clique (Ca¢, Si¢) has the next high-
est numbered node Si¢, and so has the number 6. Putting these
into numerical order, the set given in Table 6, column 1, is
obtained.

Given the cliques for the model, and a suitable set chain, the sets
of separators (Si in Eq. [9]) for each clique was found. The first
clique (Table 6) in the set chain is (Na¢, Ca¢). This is a complete
subgraph, and at the moment there are no other cliques added to
the graph, so there can be no separator sets. The next clique in the
set chain is (Na¢, K¢), and it is added to the model. The intersection
of elements between these two cliques is (Na¢), and so this

TABLE 2—Number of samples from each of the categories considered in a
particular classification problem.

Category

No. of Samples

Primary
Set

Tuning
Set

Testing
Set

Classification into car and building
windows or bulbs, headlamps, and
containers—cw versus bhp
Car and building windows (cw) 55 41 14
Bulbs, headlamps, and containers (bhp) 98 74 24

Classification into bulbs and headlamps
or containers—bh versus p
Bulbs and headlamps (bh) 41 31 10
Containers (p) 57 43 14

Classification into bulbs or
headlamps—b versus h
Bulbs (b) 25 19 6
Headlamps (h) 16 11 5

Classification into car or building
windows—c versus w
Car windows (c) 32 24 8
Building windows (w) 23 17 6

FIG. 3—An example tuning plot obtained from the first tuning set when
the cw versus bhp classification problem was considered. The ellipse indi-
cates the region of best combinations of Ĉ and r̂ which give the best accu-
racy, i.e., the ratio of the total number of predictions which were correct.
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TABLE 4—Values of accuracy—a comparison of results obtained by application of SVM, NBC, and LR models within each of the 10 test sets within each
classification problem.

Set

Classification Problem

SVM NBC LR SVM NBC LR SVM NBC LR

cw versus bhp bh versus p b versus h

1 90* 90 79 100 92 67 73 73 73
2 95 95 84 96 100 88 91 100 91
3 92 92 79 88 92 63 100 100 82
4 95 90 79 88 88 63 91 91 82
5 87 90 79 96 100 71 100 100 82
6 87 95 82 92 92 71 82 91 82
7 95 92 71 92 92 71 100 73 100
8 95 82 87 96 92 92 100 82 91
9 90 97 84 100 96 83 100 100 82

10 97 92 71 99 96 67 100 100 82

c versus w—elemental content c versus w—elemental content + RIb c versus w—elemental content + dRI

1 64 64 64 64 57 64 93 79 93
2 64 57 43 57 57 64 93 71 71
3 71 79 43 64 57 50 93 86 86
4 64 86 43 64 79 71 93 86 86
5 71 79 57 64 71 57 100 93 93
6 57 71 57 57 64 50 86 93 71
7 71 64 64 64 71 71 100 86 100
8 71 71 50 57 64 64 100 86 100
9 79 71 86 79 71 57 93 93 93

10 64 86 57 71 71 43 86 79 64

SVM, support vector machine; NBC, na�ve Bayes classifiers; LR, likelihood ratio.
*Accuracy—i.e., the percent of the total number of predictions which were corrected.

TABLE 3—Selection of the best combinations of penalty error Ĉ and radial width r̂.

Set

Classification Problem

Ĉ* r̂� SVs� Ĉ r̂ SVs Ĉ r̂ SVs

cw versus bhp bh versus p b versus h

1 80–100 0.18–0.22 28 90–100 0.08–0.10 11 9–10 0.09–0.10 8
2 80–100 0.16–0.22 30 90–100 0.08–0.10 15 9–10 0.05 11
3 70–100 0.08–0.10 29 90–100 0.10–0.12 12 8–10 0.05–0.08 12
4 80–100 0.08–0.10 25 100 0.05–0.07 13 8–10 0.05–0.08 10
5 80–100 0.06–0.16 26 60–100 0.05 14 10 0.07–0.08 9
6 70–100 0.10 28 80–100 0.03 14 8–10 0.05 8
7 80–100 0.08–0.16 28 100 0.05–0.10 16 10 0.05 8
8 80–100 0.08–0.10 28 100 0.01–0.08 12 7–10 0.06–0.07 8
9 100 0.10–0.22 28 70–100 0.03–0.08 19 9–10 0.05–0.06 12

10 80–100 0.10–0.12 27 70–100 0.03 14 7–10 0.04–0.05 12

c versus w—elements c versus w—elements + RIb c versus w—elements + dRI

1 7–8 0.05–0.10 23 40–50 0.05–0.10 20 50 0.05 21
2 7–10 0.05–0.10 20 25–50 0.05 22 25–50 0.05 18
3 8–10 0.10 23 20 0.05 24 50 0.05 20
4 9–10 0.05 24 40–50 0.10 26 35–50 0.05 17
5 10 0.05 25 50 0.10 24 40–50 0.05 19
6 6–10 0.05 21 40 0.05 20 40–50 0.05–0.10 21
7 8–10 0.05–0.10 26 35–50 0.05 24 40–50 0.05 19
8 10 0.05 22 40 0.05–0.10 26 30–50 0.05 18
9 10 0.10 25 40–50 0.05 23 40–50 0.05 21

10 9–10 0.05–0.10 24 40–50 0.05–0.10 25 20–50 0.05 17

*Ĉ– estimated range of penalty error C.
�r̂– estimated radial width (see Eq. [10]).
�SV—a number of support vectors necessary to construct a proper hyper-plane.
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becomes the first separator set. The running union of the first two
sets is now (Na¢, Ca¢, K¢). Working through the entire set chain
one arrives at the following factorization:

f Ci Sj i

� �
¼ f Na0;Ca0ð Þf Al0;K0ð Þf Al0;K0ð Þf Fe0;K0ð Þf Ca0; Si0ð Þf Mg0;Ca0ð Þ

f Ca0ð Þ2f Al0ð Þf K0ð Þf Na0ð Þ
ð11Þ

Probability density functions presented in Eq. (11) could be
expressed by (Eq. [8]) and then (Eq. [11]) become a form of LR
(Eq. [12]):

LR ¼ LR Na0;Ca0ð ÞLR Al0;K0ð ÞLR Al0;K0ð ÞLR Fe0;K0ð ÞLR Ca0; Si0ð ÞLR Mg0;Ca0ð Þ
LR Ca0ð Þ2LR Al0ð ÞLR K0ð ÞLR Na0ð Þ

ð12Þ

The model represents a minimal model that decomposes the
seven variables of the full data set into six sets of two variables
(see column Ci in Table 6). Parameters (means, variances, and
covariance) of the two-variate distributions could also be satisfac-
torily estimated on the basis of information represented by a rela-
tively small database, that is, 153 glass samples.

Graphical models for other problems considered in this paper
were analyzed in the same way and the following LR formulas
were obtained:
(i) bh versus p:

LR ¼ LR Na0;Ca0ð ÞLR K0;Na0ð ÞLR Mg0;Ca0ð ÞLR Si0;Ca0ð ÞLR Fe0ð ÞLR Al0ð Þ
LR Ca0ð Þ2LR Na0ð Þ

(ii) b versus h:

LR ¼ LR Na0;Ca0ð ÞLR K0;Na0ð ÞLR Mg0;Ca0ð ÞLR Na0;Fe0ð ÞLR Si0ð ÞLR Al0ð Þ
LR Ca0ð ÞLR Na0ð Þ2

(iii) c versus w (seven variables; elemental content):

LR ¼ LR Mg0; Si0ð ÞLR Na0; Si0ð ÞLR Ca0; Si0ð ÞLR K0;Al0ð ÞLR Fe0ð Þ
LR Si0ð Þ2

(iv) c versus w (eight variables; elemental content and RIb):

LR ¼ LR Ca0; Si0ð ÞLR RIb;Ca0ð ÞLR Na0; Si0ð ÞLR Mg0;Si0ð ÞLR K0;Al0ð ÞLR Fe0ð Þ
LR Si0ð Þ2LR Ca0ð Þ

(v) c versus w (eight variables; elemental content and DRI):

LR ¼ LR Mg0; Si0ð ÞLR Na0; Si0ð ÞLR Ca0; Si0ð ÞLR K0;Al0ð ÞLR Fe0ð ÞLR DRIð Þ
LR Si0ð Þ2

Discussion

Inspection of Table 4 shows that all models performed relatively
well. The SVM model gave slightly better results for the problem
of classifying fragments into cw versus bhp categories, bh versus p
categories, as well as b versus h categories. In most of cases, the
LR model gave slightly higher misclassification rates for most of
the experiments conducted here.

The misclassification rate for the categorization of glass objects
into cw or bhp categories is relatively low. The highest misclassifica-
tion rate (71% correct; 11 incorrectly classified specimens from 38
glass objects) was observed for sets no. 7 and 10 when the LR model
was used, and the lowest misclassification rate (97% correct; 1 incor-
rectly classified specimen) was obtained by application of SVM on
set no. 10 and by the application of the NBC approach to set no. 9.

Perfect classification was obtained for test sets no. 1 and 9 when
the SVM model was used, and at test sets no. 2 and 5 when the NBC
model was used to classify into bh and p classes. The highest mis-
classification rate (63% correct, nine incorrectly classified specimens
from 24) was within set no. 9 when the LR model was used.

An analysis of the misclassification rates obtained for the
bulb ⁄headlamp classification problem conducted on the test sets,

TABLE 5—The rescaled inverse of the variance-covariance matrices for
the seven or eight variables from the glass samples in each of six

considered problems (only the upper right triangle of the matrix is given,
the lower left triangle is given by symmetry).

Na¢ Mg¢ Al¢ Si¢ K¢ Ca¢ Fe¢ RIb/dRI

(a) cw versus bph
Na¢ 1.000 )0.038 )0.108 )0.182 0.261 )0.610 0.015
Mg¢ 1.000 0.124 0.024 0.053 )0.355 )0.114
Al¢ 1.000 0.208 )0.406 0.003 0.345
Si¢ 1.000 )0.037 0.212 0.057
K¢ 1.000 0.046 )0.005
Ca¢ 1.000 )0.013
Fe¢ 1.000

(b) bh versus p
Na¢ 1.000 )0.041 0.045 )0.215 0.324 )0.595 )0.101
Mg¢ 1.000 0.121 0.095 )0.056 )0.347 )0.067
Al¢ 1.000 )0.087 )0.073 )0.046 )0.077
Si¢ 1.000 )0.131 0.227 0.226
K¢ 1.000 0.071 )0.126
Ca¢ 1.000 0.035
Fe¢ 1.000

(c) b versus p
Na¢ 1.000 )0.048 0.090 0.116 0.560 )0.581 )0.383
Mg¢ 1.000 0.187 0.063 )0.100 )0.352 )0.345
Al¢ 1.000 )0.115 0.049 )0.088 )0.211
Si¢ 1.000 0.096 )0.027 )0.097
K¢ 1.000 )0.017 )0.272
Ca¢ 1.000 0.273
Fe¢ 1.000

(d) c versus w (seven variables; elemental content)
Na¢ 1.000 0.032 )0.127 )0.414 0.142 0.231 0.273
Mg¢ 1.000 0.077 )0.385 )0.034 0.285 )0.114
Al¢ 1.000 0.132 )0.466 0.025 0.314
Si¢ 1.000 )0.167 )0.830 0.099
K¢ 1.000 0.105 )0.088
Ca¢ 1.000 )0.152
Fe¢ 1.000

(e) c versus w (eight variables; elemental content and RIb)
Na¢ 1.000 0.034 )0.127 )0.394 0.142 0.214 0.262 0.009
Mg¢ 1.000 0.079 )0.424 )0.039 0.340 )0.038 0.208
Al¢ 1.000 0.119 )0.466 0.030 0.303 0.018
Si¢ 1.000 )0.149 )0.849 )0.017 )0.325
K¢ 1.000 0.085 )0.092 )0.027
Ca¢ 1.000 0.003 0.411
Fe¢ 1.000 0.326
Rib 1.000

(f) c versus w (eight variables; elemental content and dRI)
Na¢ 1.000 0.030 )0.126 )0.406 0.142 0.221 0.271 0.009
Mg¢ 1.000 0.117 )0.402 )0.032 0.315 )0.138 )0.171
Al¢ 1.000 0.084 )0.449 0.087 0.261 )0.251
Si¢ 1.000 )0.166 )0.834 0.123 0.166
K¢ 1.000 0.104 )0.088 )0.009
Ca¢ 1.000 )0.185 )0.253
Fe¢ 1.000 0.159
dRI 1.000
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gave the highest misclassification (73% correct; three incorrectly
classified specimens from 11 glass objects) from test set no. 1,
when the LR model was applied. An accuracy of 100% classifica-
tion was obtained 12 times, but mostly through the application of
the SVM and NBC models.

When the classification problem c versus w was conducted using
only elemental concentrations, the lowest misclassification was
86% correct (two incorrectly classified specimens among 14
objects) obtained when the NBC model was applied to test set no.
10. The highest misclassification rate (43% correct; sets no. 2, 3,
and 4) was obtained by application of the LR model. However, the
LR model gave better results than the SVM and NBC models for
set no. 9. These observations might be expected because samples
from car and building windows have quite similar elemental com-
positions. When RIb was included as an additional feature then the
misclassification rates rose, the highest misclassification rate (43%
correct; eight incorrectly classified samples among 14 ones) was
obtained by application of the LR model (set no. 10) and the low-
est misclassification rate (79% correct; three incorrectly classified
samples) was obtained for SVM (test set no. 9), and by NBC (test
set no. 4) and by the LR model (set no. 9).

The application of DRI in form of log10 DRIð Þj j as an additional
feature for the c versus w classification problem gave generally
much better results. For example, the highest misclassification rate
was 64% correct (five incorrectly classified specimens from 14
objects), and was obtained one time (set no. 10) when the LR
model was applied. All samples were correctly classified for test

sets no. 5, 7, and 8 when the SVM model was applied, and sets
no. 7 and 8 when the LR model was applied.

On no occasion did the LR model outperform the other models
for the first three classification problems. It also gave the highest
misclassification rates when various combinations of variables in
the c versus w problem were used, however, the observed differ-
ences between the classification models were not great. These
results suggest that, from a practical point of view, SEM-EDX
analysis of major and minor elements contains sufficient informa-
tion to reliably classify glass objects into the p, b, h, or cw catego-
ries when the following scheme is used:
(i) Classification of the unknown specimen to cw or bhp cate-

gory. When the sample is classified to cw category then halt
the process because it can be concluded that the unknown
specimen is most likely to belong to the cw category than to
the bhp category. If a specimen is assigned to the bhp cate-
gory then the classification has to be extended to assign
between bh and p categories.

(ii) If, after assignment of the glass to the bh or p categories, the
specimen can be assigned to the p category, then halt the
classification process because the most likely category is p. If
it is found that a specimen most likely belongs to bh category
then further sub-classification to either the b or h categories is
possible.

(iii) If sample most likely belongs to the cw category then either
the c or the w categories can be made upon the basis of DRI
information.

The effectiveness of the proposed algorithm for glass classifica-
tion on the basis of SEM-EDX analysis has been illustrated by case-
work. The clothes of a person in charge of a motor vehicle which
was suspected to have been involved in a hit-and-run incident with a
pedestrian were sent for analysis. The primary aim of the analysis
was to recover all possible glass fragments which could help the
investigators to identify the person, or persons, present at the scene
of the incident. Key to this investigation was whether there were
glass fragments from c (car) category on his clothes. Debris were
collected by brushing, and analyzed by optical microscope. So many
glass fragments of linear dimension 0.1–0.2 mm were found that it
was not possible to analyze them all. Therefore, 10 fragments
were taken for elemental analysis. They were only analyzed by the

TABLE 6—Results of factorization of the undirected model presented in
Fig. 4.

i Clique (Ci)
Running

Union (Ri)
Separator
Set (Si)

1 (Na¢*, Ca¢) (Na¢, Ca¢) /
2 (Na¢, K¢) (Na¢, Ca¢, K¢) (Na¢)
3 (Al¢, K¢) (Na¢, Ca¢, K¢, Al¢) (K¢)
4 (Fe¢, Al¢) (Na¢, Ca¢, K¢, Al¢, Fe¢) (Al¢)
5 (Ca¢, Si¢) (Na¢, Ca¢, K¢, Al¢, Fe¢, Si¢) (Ca¢)
6 (Mg¢, Ca¢) (Na¢, Ca¢, K¢, Al¢, Fe¢, Si¢, Mg¢) (Ca¢)

*The abbreviation of log10 of oxygen concentration to concentration of
each element.

FIG. 4—Results of construction of the undirected graphical model: (a) a model calculated on the basis of the rescaled inverse of the variance-covariance
matrix (Table 5a) for the seven variables from the 153 glass objects, (b) model (a) with marked cliques and numbers designated to each node. Na¢, Mg¢, Al¢,
Si¢, K¢, Ca¢ and Fe¢—the abbreviation of log10 of oxygen concentration to concentration of each element.
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SEM-EDX method because of their relatively small size. The results
of SEM-EDX analysis and the classification process are presented at
Table 7. Other traces which could be thought to be characteristic of
car accidents (e.g., paint smears) were not found.

It was concluded that the elemental composition of all 10 glass
fragments most likely belonged to the cw category. Nevertheless,
it was thought that in this case a further classification into c or w
category would not be reliable. However, the relatively large num-
ber of recovered glass fragments classified to the joint cw category
suggested to the public prosecutor that the suspect had played a
part in this hit-and-run incident.

Conclusions

The proposed scheme for glass fragment(s) classification works
with relative efficiency, except that assignment to car windows (c)
and building windows (w) needs to be treated with care because of
the very similar elemental content of these two categories. Research
on classification of glass objects to c and w categories should focus
on the combination of elemental content and information on DRI
which seems to be giving very promising results. The application
of SVM and NBC gave slightly better results then application of
the LR model. However, the observed differences in misclassifica-
tion rates were not great (especially in c vs. w problem), and no
single classification method was obviously more effective than any
other. Despite the slight underperformance compared with the
SVM and NBC methods, the LR model can be recommended as
this framework has the advantage that an LR is easily interpretable,
does not act as a ‘‘black-box’’ unlike the SVM method, and does
not require the investigator to make some assumption about prior
belief, unlike the NBC method (1,3–6).

Moreover, the LR model might be easily adapted to other foren-
sic classification problems where the observations may be multi-
variate, for instance, where questions arise surrounding the
differentiation between kerosene and diesel fuel traces which might
be recovered from fire debris. These two organic compounds have

very similar chemical compositions, and it is difficult to distinguish
between them in any simple fashion on the basis of GC ⁄ MS
measurements.
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